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1. Introduction  

 
Forecasting international migration is an important, yet difficult research task, characterised 
by the highest errors among the forecasts of all components of the demographic change 
(NRC, 2000). Reasons for this include a lack of a comprehensive migration theory 
(Willekens, 1995), difficulties in operationalisation of the theoretical framework of migration, 
uncertainty of potential explanatory variables, ignoring forced migration and policy elements 
in the forecasts, as well as poor data quality (Kupiszewski, 2002).  
 
In order to improve accuracy of the international migration forecasts, attempts should be also 
made to improve the forecasting methodology. The paper is devoted to selected 
methodological aspects of international migration forecasting. The objective is to present an 
overview of the existing forecasting methods and to propose an alternative approach based on 
the paradigm of Bayesian statistics. The underlying idea is to suggest a methodology that 
would combine the advantages of the existing ones, including both the formality of the 
applied statistical tools, and including subjective expert judgement in the forecasting model. 
 
Apart from the introduction, the paper comprises of four sections. In Section 2, the issues of 
uncertainty, subjectivity and expert judgement in migration forecasting are addressed, 
followed by brief introductory remarks about the Bayesian statistical inference. The Bayesian 
philosophy is presented as a formal way to transform the prior beliefs by including sample 
observations, in order to obtain the posterior knowledge – the outcome of the analysis. This 
methodology allows for construction of forecasting models combining the formal methods 
with the subjective expertise.  
 
In Section 3, an overview of the existing methods and practice in international migration 
forecasting is offered, focusing on (1) survey-based and Delphi-style migration scenarios, (2) 
mathematical models of population flows, (3) econometric forecasts of international 
migration, (4) stochastic forecasts of time series, and (5) existing Bayesian forecasts. The 
models are briefly evaluated according to their methodological features, allowing for 
identification of their major strengths and weaknesses.  
 
In Section 4, examples of construction and estimation of Bayesian forecasting models are 
presented for international migration between Poland and Germany, followed by the mid-
range forecasts for seven years 2004–2010. Finally, Section 5 contains the main conclusions 
of the study, and an evaluation of potential usefulness of the Bayesian methodology in 
forecasting international migration.  
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2. Uncertainty and subjectivity in migration forecasting and in the 
Bayesian statistics 

2.1. Uncertainty and subjectivity in migration forecasting 
 
Uncertainty about the future values of the forecasted phenomena is an immanent feature of 
every forecast. With respect to the sources of uncertainty in population (and thus also 
migration) forecasting, Keilman (1990: 19–20) distinguishes seven types of possible errors. 
Three of them are related to the measurement issues (errors in observed trends, in jump-off 
data, and rounding errors), one to the randomness of the parameters of the forecasting model, 
and further three to the errors in the forecasts of exogenous variables, possible future 
discontinuity in trends, and to the improper model specification. Rees and Turton (1998), and 
Keilman (2001) observed that uncertainty in population forecasting is usually dealt with in a 
number of ways: 
 

1. Ignored, by constructing single-variant deterministic forecasts; 
2. Included, but not quantified in terms of probability, by developing multi-variant 

scenarios (conventionally: baseline, high, and low), which is often done by the national 
statistical offices, the United Nations (2005) and the Eurostat (2006, forthcoming); 

3. Accommodated within a stochastic approach, which quantifies uncertainty in terms of 
probabilities of future events. Keilman (2001), and Wilson and Bell (2004) distinguish 
three types of stochastic forecasts: extrapolation of time series (de Beer, 1990; Lee and 
Tuljapurkar, 1994; Keilman et al., 2001), propagation of historical forecast errors 
(Keyfitz, 1981; Stoto, 1983; Alho and Spencer, 1985; Alho, 1990; NRC, 2000), and 
probabilistic projections based on the expert judgement (Lutz et al., 1996, 1998, 2004).  

 
In international migration forecasting, all three possibilities are used. Deterministic forecasts 
are often the outcome of various surveys or Delphi-style analyses. The multi-variant scenarios 
are often the outcome of the models of demographic dynamics, as the cohort-component or 
multiregional models. Stochastic forecasts of international migration are usually either the 
outcome of econometric models, or time series extrapolation, with only a few examples of 
forecasts applying the Bayesian approach.  
 
From the probabilistic point of view the deterministic and the scenario approaches are 
methodologically inconsistent. A deterministic forecast formally has a probability of 
occurrence equal zero under any continuous distribution reflecting uncertainty. The scenario 
approach is criticised for not providing the information, what are the expected ex-ante 
chances that the phenomena under study will be actually observed between the low and high 
scenarios (Lutz et al., 2004: 19). Moreover, the scenario selection (baseline, high or low) 
often implicitly assumes the presence of a single common underlying factor for all variables 
(fertility, mortality, migration) and regions under study. The aggregate effects are thus based 
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on the assumption of a perfect correlation between the variables or regions, which is not 
formally examined, and very often not true (NRC, 2000: 191–192). Unlike in the former two 
cases, in the stochastic approach uncertainty is quantified in terms of probability. Thanks to 
this, as well as to the methodological consistency of the approach, many authors argue that the 
probabilistic forecasting in demography will become increasingly more in use in the future 
(Lutz and Goldstein, 2004: 3–4).  
 
As it has been noted by Pittenger (1978), all population forecasts and projections rely heavily 
on the expert judgement. Uncertainty inherent in the forecasts requires many subjective 
elements, including the choice of the forecasting model, its assumptions, forecasts of the 
future changes of exogenous variables and other components of population dynamics, etc. 
This subjectivity can be either explicitly stated in the forecast, or concealed among the 
assumptions applied. In either case, it is an inherent element of the forecasting model 
selection and assumption-making on the scenarios of demographic change (Gjaltema, 2001). 
The incorporation of expert judgement in population forecasting is usually not explicitly 
addressed by the forecasters, with the notable exceptions of, for example, the studies by Alho 
and Spencer (1985), Alho (1990), and Lutz et al. (1996, 1998, 2004).  
 
International migration is a very complex and multi-dimensional phenomenon, characterised 
by a large dose of uncertainty, which ideally should be properly addressed and quantified. The 
existing methods of migration forecasting include various approaches originating from 
demography, economics, sociology, geography, political science etc. Improvement of the 
forecasting methodology may require combining expertise from various disciplines. However, 
the subjective and judgemental elements, inevitable in any forecast, should be explicitly 
visible in the formulation of the model and its assumptions. This is the basic rationale for 
selecting Bayesian statistics as a promising framework of forecasting international migration. 
 

2.2. Bayesian statistics: introductory notes 
 
In the Bayesian paradigm in statistical inference, based on the Bayes Theorem (Bayes, 1763; 
Laplace, 1812), the sample information is used to transform the prior knowledge of the 
researcher with respect to the phenomenon under study, into the posterior knowledge. The 
former reflects the subjective opinion (belief, intuition) on the subject, without taking 
observations into account, while the latter is conditional on the sample data. The Bayesian 
statistics infers on the unknown parameters of the model describing the phenomenon (θ ), 
conditionally on the statistical information (x), unlike in the traditional sampling-theory 
statistical methods, e.g. in the Neyman-Pearson theory of hypothesis testing. The Bayesian 
statistics as a complete inference paradigm originates from the works of Jeffreys (1939), 
Barnard (1947, 1949) and Savage (1954); its complete theoretical overview is given for 
example in Bernardo and Smith (2000). The scheme of Bayesian inference and the Bayes 
Theorem are presented in Box 1. 
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Box 1. The Bayes Theorem and the Bayesian statistical inference 
posterior knowledge  =  prior knowledge  ·  likelihood of the data  
p(θ | x) =  p(θ ) · p(x|θ ) / p(x) 

 
An important issue is the selection of the prior probability distribution of the estimated 
parameters, p(θ ), reflecting the knowledge of the researcher, or lack thereof, in the case of 
non-informative distributions introduced by Jeffreys (1939). Selection of an informative prior 
distribution is usually supported by the expert judgement. An analysis of robustness of the 
results against changes in the prior distribution is an important element of the Bayesian 
inference. A natural outcome of the analysis is the posterior distribution p(θ |x), which can be 
summarised by its point characteristics (mean, median, etc.), or credible regions, analogous to 
confidence regions in the sampling-theory statistics, but without the problems and 
inconsistencies regarding the interpretation of the latter (Jaynes, 1976).  
 
A key concept in the Bayesian statistics, distinguishing it from the sampling-theory approach, 
is subjective probability, independent from the frequency of events under study (Ramsey, 
1926; De Finetti, 1937). Statistical inference can be seen as a decision problem, with strong 
relations between the concepts of probability and utility. Interpretation of probability as a 
measure of belief on the phenomena under study, altered by the observations according to the 
Bayes theorem, has an advantage in social sciences, where the samples are by nature 
unrepeatable. However, due to the explicitly expressed subjectivism, the Bayesian approach 
developed in the opposition to the traditional, sampling-theory mathematical statistics. 
Contemporarily, the attempts to reconcile the two paradigms include the ‘objective 
Bayesianism’, assuming no prior information (Bayarri and Berger, 2004), and the pragmatic 
approach, allowing for choosing the methodology, depending on the nature of the research 
(Chatfield, 2002).  
 
Forecasting in the Bayesian approach is based on the construction of a probability distribution 
of the vector of future values of the variable under study, xF, conditional on the vector of past 
(observed) values, x, and taking into account the posterior knowledge on the parameters of the 
forecasting model, θ. The predictive probability distribution of xP can be calculated according 
to the formula presented in Box 2 and interpreted as an average from the conditional 
predictive distribution p(xP|θ,x), weighted with the posterior probabilities of the parameters 
(Zellner, 1971: 29). Natural results of Bayesian forecasting are predictive credible regions, 
which formally reflect the uncertainty of the phenomenon under study.  
 
Box 2. Forecasting in the Bayesian approach 
predictive distribution   
p(xP|x)  = ∫

Θ

p(xP,θ|x)dθ  = ∫
Θ

p(xP|θ,x) ⋅ p(θ|x) dθ. 
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Bayesian methodology can reduce the estimation and prediction errors, in case the prior 
distribution is informative and consistent with the observations. For non-informative priors, 
the ex-ante errors in one-dimensional problems are often the same as in the traditional 
maximum likelihood estimation (Bernardo and Smith, 2000: 359). This is important in the 
small-sample studies (e.g., with population disaggregated by sex, age, regions, etc.), where 
the prior information has relatively more weight in the posterior result than the observations, 
unlike in large datasets. The extreme estimates obtained from small-sample data are in this 
way corrected towards the prior expectations. The same applies to forecasting models based 
on short time series, where the Bayesian approach is a way to reduce uncertainty. 
 
Additionally, the Bayesian methodology allows for a formal model selection in order to 
maximally utilise information from the sample, by comparing the posterior odds of different 
models given the data. Some authors suggest that such criteria favour more straightforward 
explanations of the phenomena under study, according to the principle of the Ockham’s razor 
(Jeffreys and Berger, 1992). Another possibility is Bayesian inference pooling, currently 
known as Bayesian model averaging (Hoeting et al., 1999), which allows for combining the 
features of various predictive models in order to reduce the uncertainty of model 
specification.  
 
In demography, the Bayesian approach has been successfully applied to forecast population 
(Daponte et al., 1997), or the main components of population change: fertility (Tuljapurkar 
and Boe, 1999), mortality (Girosi and King, 2004), and migration (Gorbey et al., 1999; 
Brücker and Siliverstovs, 2005).  
 

3. Overview of existing methods of forecasting international 
migration 

3.1. Survey-based and Delphi-style migration scenarios 
 
One group of research studies that are used to assess the future international migration flows 
are sociological survey studies of ‘migration potential’ (Fassmann and Hintermann, 1997; 
IOM, 1998). In such studies, the respondents are usually asked, whether they consider 
undertaking migration, and, if yes, when, for how long, etc. There are a few problems with 
such studies (Kupiszewski, 2002). Firstly, the definitions used in such studied are very vague, 
as in the case of the ‘migration potential’ itself. Secondly, the way the questions are 
formulated may heavily influence the results obtained. Thirdly, the declarations people make 
to the survey-takers are not directly transformable into the actual migration behaviour. 
Finally, in many studies of this type, the sample sizes are to small to obtain meaningful results 
considering breakdowns by sex, age groups, regions, etc.  
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Another group of methods for forecasting migration explicitly refers to the expert judgement. 
They include obtaining migration scenarios from Delphi or quasi-Delphi analyses (Drbohlav, 
1995), as well as from surveys conducted among the experts in the field (Bauer and 
Zimmermann, 1999). The outcomes of such studies can serve as a valuable input into formal 
statistical forecasts, especially as informative prior distributions in the Bayesian models. 

 
3.2. Mathematical models of population flows* 
 
According to Kupiszewski (2002), mathematical models of migration emerge predominantly 
from two different approaches: geographic and demographic. The former one focuses more on 
the spatial outcomes of the redistribution of migrants, while the latter – on the population 
distributions by sex and age, and on their impact on the overall demographic dynamics. Both 
of them apply mathematical tools to model and forecast migratory flows. 
 
The geographic approach focuses mainly on the applications of the methodology of Markov 
chains, as well as various models of spatial interactions. The usage of Markov chains in 
modelling population movements between regions (states of the chain) evolved from the 
models with homogeneous transition matrices (Prais, 1955; Brown, 1970). The important 
modifications included models with unobserved heterogeneity of the populations, in the 
mover-stayer model of Blumen et al. (1955), or in a model with different transition matrices 
for various subpopulations (Goodman, 1961). Other methodological variations are models 
with heterogeneous transition matrices (Rogers, 1966; Joseph, 1974), and non-stationary 
chains. The latter include semi-Markov processes (Ginsberg, 1971), as well as models with 
the ‘cumulative inertia’ property, assuming that the longer a person does not migrate, the less 
propensity (s)he will have to do it in the future (McGinnis et al., 1963).  
 
The examples of models of spatial interactions include the ‘intervening opportunities’ concept 
of Stouffer (1940), where the number of migrations is proportional to the number of open 
‘opportunities’ for the migrants at the destination, and inversely proportional to the number of 
similar ‘opportunities’ located closer to the region of origin. Stewart (1941) and Isard (1960) 
developed gravity models of migration, in analogue to Newton’s law, with distance as a 
discounting factor. Other examples of mathematical models of spatial interactions applied to 
migration are: entropy, catastrophe theory, and bifurcations (Wilson, 1970, 1981).  
 
In the demographic approach, the traditionally-used cohort-component model for 
demographic projections, originating from Leslie (1945), has evolved to include migration in 
the population accounting models (Rees and Wilson, 1973), multiregional models (Rogers, 
1975), and multi-state models (Keyfitz, 1980). The migration component has been also 
incorporated in the micro-level event-history analysis, with migration as one of the possible 

                                                 
* Section partially based on the overview of migration models made by Kupiszewski (2002). 
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demographic events that may happen to an individual (Ginsberg, 1979; Courgeau, 1985). In 
the latter case, the analysis is performed using the Monte Carlo micro-simulations. 
 
In addition to the geographic and demographic approaches, there has been also an attempt to 
model social processes, including migration, using the tools of theoretical physics within the 
framework of the ‘sociodynamic’ approach (Weidlich and Haag, 1988). However, the 
complexity of the model rendered it unexploited in practice. 
 
The main drawback of a majority the presented mathematical models of migration, apart from 
the event-history analysis, is that they themselves do not explicitly address the issue of 
uncertainty, important for preparing any forecast on their basis. Although some of the models 
apply stochastic tools (e.g., Markov chains), and can be therefore used to assess uncertainty 
using simulations, this possibility has not been explored up to date. However, the assessments 
of uncertainty may be also included in a majority of demographic models (cohort-component, 
multi-regional, or multi-state) by feeding them at input with stochastic forecasts of particular 
components of demographic change. The latter may involve econometric forecasts and time 
series models, both in the sample-theory and the Bayesian frameworks.  
 
3.3. Econometric forecasts of international migration 
 
Since the 1990s, many studies have been published, predominantly in Austria and Germany, 
focusing on forecasting migration in Europe after the anticipated enlargement of the European 
Union. An overview of such studies has been recently presented in Alvarez-Plata et al. (2003), 
and in Brücker and Siliverstovs (2005). In the current paper only a selection of the models is 
presented, covering different modelling approaches. The notation follows the original studies, 
with the country subscripts always denoted i and j, respectively for the origin and destination 
countries, and the normal distributions presented as N(µ, τ), with mean µ, and precision 
parameter τ being a reciprocal of the variance, τ = σ −2. 
 
Franzmeyer and Brücker (1997) built a gravity model of net migration between the regions i 
and j, based on the logarithm of the difference of the GDP per capita (PPP-adjusted), ln(Yi / 
Yj). The model has been calibrated on the basis of the empirical analysis of the elasticity of 
migration on income differentials in Europe presented in Barro and Sala-i-Martin (1995), 
where an income gap of 10% was found to drive 0.064% of the population of the less wealthy 
region out from their place of origin. Due to this assumption, the model yielded extremely 
high migration forecasts, with migration from the 10 Central-Eastern European countries to 
the EU-15 in the height of 590–1,180 thousands a year, depending on the pace of convergence 
of income levels between the origin and the destination countries.  
 
Fertig and Schmidt (2000) modelled rates of migration to Germany, m, from the four then-
candidate countries (Poland, the Czech Republic, Hungary and Estonia), with the error term 
decomposed into the country-specific, time-specific, and cross-sectional components: 
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mi,t = µ + εi + εt + εi,t,          (3.1) 

where i denotes country of origin, εi ~ N(0, τi), εi,t ~ N(0, τi,t), and εt is a Gaussian 
autoregressive process AR(1). This forecast yielded an average population inflow to Germany 
totalling between 15 and 57 thousand migrants a year in the period 1998–2017. 
 
Sinn et al. (2001) forecasted stocks of foreign population in Germany (B) originating from the 
largest then-candidate countries: Poland, Romania, the Czech Republic, Hungary and the 
Slovak Republic. The authors used a partial adjustments model:  

 Bt = λ [α0 + α1 YVt + α2 Gt + α3 EUt + α4 FRt + (1/λ – 1 + α5) Bt–1] + εt,   (3.2) 

where λ satisfies the condition: Bt = Bt–1 + λ (Bt
* – Bt–1), and Bt

* is a ‘long-term equilibrium’ 
of the foreign population stocks under study. The remaining explanatory variables are: YV – a 
fraction of GDP per capita (PPP-adjusted), G – an output gap, EU – a dummy concerning the 
EU membership, and FR – a dummy concerning freedom of movement of the labour force. 
The model has been partially calibrated on the historical data for German population stocks 
originating from Greece, Italy, Portugal, Spain, and Turkey. The Bt was forecasted to increase 
from the initial 459 thousand to 3.2–4.1 million people by 2015. A similar model has been 
applied by Brücker and Siliverstovs (2005), with the error term decomposed into the country-
specific effect and the white noise. 
 
Alvarez-Plata et al. (2003) prepared a forecast of the post-enlargement migration to the EU-15 
from the ten countries of Central and Eastern Europe. Dependent variables are the rates of 
migration from county i to j, relative to the population size of the origin country (ms):  

msi,j,t = α + (1 – δ) msi,j,t–1 + β1 ln(wj,t / wi,t) + β2 ln(wi,t) + β3 ln(ei,t) + β4 ln(ej,t) +   
+ β5 ln(Pi,t) + γ Zi,j + ui,j,t,         (3.3) 

where ui,j,t = µi,j + vi,j,t, and vi,j,t is the white noise. The other explanatory variables are: w – real 
income levels, e – employment rates, P – population sizes, and Z – cross-country dummy 
variables denoting the geographic and cultural proximity of particular countries. Under the 
assumption of a long-term convergence of the economic explanatory variables to their EU-15 
levels, the migration from the ten countries of Central and Eastern Europe is forecasted to 
decline exponentially from 367 thousand a year, shortly after the introducing the freedom of 
labour force movement in the enlarged EU, to the levels below zero in 2030. 
 
Although the econometric models incorporate the analysis of uncertainty, this issue is not 
given proper attention in many studies devoted to migration forecasting. In some studies there 
are also problems with the model specification (Kupiszewski, 2002). Firstly, if numbers of 
migrants are forecasted, as in Franzmeyer and Brücker (1997), instead of rates denoting the 
migration risk, there is a lack of control on the demographic characteristics of the populations 
under study (size and age structure), which may lead to extreme results, as shown above. 
Even when forecasting rates, if the population size is one of the explanatory variables, as in 
Alvarez-Plata et al. (2003), the population movements occur de facto outside the model, being 
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another source of bias. Finally, many independent variables used as predictors (GDP, 
unemployment, etc.) can be equally or more difficult to forecast than the dependent variable, 
that is migration.  
 
3.4. Stochastic forecasts of migration time series 
 
Another important class of stochastic models used in migration forecasting are the models 
based on the analysis and extrapolation of the time series. Most frequently it is done by 
applying various ARIMA models (Box and Jenkins, 1976), mainly within the framework of 
the sampling-theory statistics. For example, de Beer (1997) modelled the total volume of 
emigration from, as well as immigration to the Netherlands using the AR(1) autoregressive 
models, xt = c + φ xt–1 + εt, where εt denotes white noise, while the moving average process 
MA(1), xt = c + εt – θ εt–1, has been found suitable for net migration. For Finland, Alho (1998) 
used the ARIMA(0,1,1) models, xt = c + xt–1 + εt – θ εt–1, for the logarithms of immigration, as 
well as for emigration volumes. Keilman et al. (2001) made a probabilistic population forecast 
for Norway with the ARMA(1,1) model for the log of immigration, xt = c + φ xt–1 + εt – θ εt–1, 
and the ARIMA(0,1,0), i.e. random walk with drift, for the log of emigration, xt = c + xt–1 + εt.  
 
Multivariate generalisations of the time series models can be used to include other 
explanatory variables, as in the VAR(4) vector autoregressive models of Gorbey et al. (1999), 
used for forecasting migration between Australia and New Zealand. The model, based on 
quarterly data, has the form: 

 Xt = C0 + (C1 L+ C2 L2+ C3 L3+ C4 L4) Xt + εt,     (3.4) 

where Ci are coefficient matrices, L is the lag operator (L(Xt) = Xt–1), and εt is a multi-
dimensional white noise. The authors tested four models based on different vectors of 
interdependent variables, Xt, including net migration rates, growth of the real GDP ratio (or 
the real income ratio) for the two countries, differences in unemployment rates, country-
specific unemployment growth indices, etc. Although the authors remarked that the 
movements between Australia and New Zealand are largely visa-free and they resemble 
internal migration, similar models can be used also for typically international population 
flows, after adjusting them to include additional policy-related variables, etc. 
 
An example of a partial departure from the sampling-theory statistical paradigm in 
demographic forecasting is the concept of the ‘expert-based probabilistic population 
projections’ developed by Lutz et al. (1996, 1998, 2004). The method applies subjective 
expert judgement to set the framework for the stochastic forecasts. In formal terms, with vt 
denoting the phenomenon under study (here: migration), the forecasting model is ttt vv ε+= , 

where tv  is the average trajectory of the process, assumed a priori by the experts, and εt is a 

random process, e.g., AR(p) or MA(q). Lutz et al. (2004) applied εt ~ MA(30), assuming 
additionally that the standard deviation of εt, σ (εt), is equal to a pre-defined value σ *(εt), also 
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set on the basis of the expert judgement. For migration, it was assumed that vvt = (the mean 

of the process is time-invariant), while σ *(εt) has been selected so that 80% of the density of 
the probability distribution of vt is concentrated between zero and the arbitrarily-chosen value 
vmax. Due to the explicitly expressed subjectivity, this approach can be seen as a hybrid 
between the traditional and Bayesian methods. 
 
The key advantage of all time series models used in migration forecasting is that they 
explicitly include the analysis of uncertainty. Using the VAR models additionally allows for 
including additional predictors of migration, without having to forecast them separately.  
 
3.5. Existing Bayesian models and forecasts of population flows 
 
The existing examples of international migration models and forecasts based on the Bayesian 
framework are scarce. Gorbey et al. (1999) extended their aforementioned VAR(4) analysis of 
migration between Australia and New Zealand (3.4) to the Bayesian case. They used the 
Minnesota priors for model coefficients, with parameters on the first lags of the same 
variables following a priori a normal distribution N(1, τi,i,1) and the remaining parameters 
N(0, τi,j,k) for interrelations between the i-th variable and the k-th lag of the j-th variable, i ≠ j 
or k > 1. This reflects an assumptions that the time series of each variable is most likely 
generated independently by a random walk process. Further, they assumed that si,j,k = τi,j,k

–0.5 = 
= γ ⋅ g(k) ⋅ f(i,j) ⋅ si / sj, where: γ = 0.4, g(k) = k–1, f(i,i) = 1, f(i,j) < 1 for i ≠ j, and si denotes a 
standard error in the autoregressive model for the i-th variable. Note, that as the si values have 
to be estimated from the observations and thus the priors are data-based, this is not a fully 
Bayesian approach, where prior distributions are specified independently from the data. In the 
ex-post analysis, the authors found that the best Bayesian model (with Xt comprised of net 
migration rates, the growth of the real GDP ratio for the two countries, and quarterly 
unemployment growth in Australia) performed slightly worse than the corresponding 
traditional VAR, likely due to the disagreement between the priors and the data.  
 
Examples of applications of Bayesian gravity models of population flows are in Congdon 
(2000, 2001). Although in these studies the flows of patients to hospitals are modelled rather 
than migration as such, the models can be generalised to cover also the other types of spatial 
movements. Assuming that a number of patients from region i to the hospital j has a Poisson 
distribution with a mean (µi,j), the models can be defined as (Congdon, 2001): 

ln(µi,j) = k + α0 ln(Pi) + δ ln(Ri,j) + ξ1 E1,j + ξ2 E2,j + φ Si,j,     (3.5a) 

or, alternatively: 

ln(µi,j) = k + α0 ln(Pi) + α1 YANi + α2 Agedi + δi ln(Ri,j) + ξ1 E1,j + ξ2 E2,j + φ Si,j. (3.5b) 

The main explanatory variables are: Pi – population size of the i-th region, and Ri,j – ‘supply’ 
of medical services – number of beds in the j-th hospital, Bj, weighted by an average distance 
(crow-fly or car-time), from the i-th region to the j-th hospital, di,j. The other predictors 
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include: YANi – an index of demand for the health-care services, Agedi – a fraction of 
population aged 65+, E1,j, E2,j – dummy variables for two selected hospitals, and Si,j – a 
dummy indicator, whether the j-th hospital is located in the i-th region. The prior distributions 
are normal, diffuse for the constant, k ~ N(1, 0.0001), and more informative for the remaining 
parameters: αi, β, δ ~ N(1, 0.1), γ ~ N(2, 0.1), and ξ1, ξ2, φ ~ N(0, 0.1). The second model, in 
its variant based on the car-time distance, has been found best fitting the data. 
 
The study of Brücker and Siliverstovs (2005) also contains some elements of a Bayesian 
analysis. The latter, however, is considered by the authors only as an alternative methodology 
of estimation, without any mention of the prior distributions used in the analysis, and without 
the a posteriori uncertainty assessment, which elements are both inherent in the Bayesian 
approach. Their ex-post comparison of various estimation methods for a partial-adjustment 
model showed that the hierarchical Bayes estimator (likely the mean in the appropriate 
posterior distribution) and the sampling-theory fixed effects estimator performed best.  
 
As in the case of the sampling-theory time series models, the Bayesian ones address the issue 
of uncertainty in an explicit way and allow for including additional explanatory variables in 
the VAR models. Furthermore, the subjective expert knowledge on the characteristics of the 
processes and on interactions between variables can be incorporated in the models in the form 
of the prior distributions of the parameters.  
 

4. Examples of simple Bayesian models for forecasting 
international migration 
 
4.1. Data, specification and estimation of the models 
 
The presented numerical example aims at producing Bayesian forecasts of long-term 
international migration flows between Poland and Germany for the years 2004–2010, prior to 
the opening of the German labour markets for Polish citizens, expected for 2011. Data on 
migration flows and population stocks for 1985–2003 predominantly come from the Eurostat. 
The time series of the economic explanatory variables: the GDP and unemployment rates are 
respectively from the databases of the United Nations Economic Commission for Europe and 
of the World Bank. The German data prior to 1991 concern West Germany. As in Poland 
before 1990 there was officially no unemployment†, in the current study the respective rates 
have been assumed to equal 0.1, an arbitrarily chosen small positive number, in order to avoid 
problems with the logarithmic transformation of the variable.  

                                                 
† Hidden unemployment, the rate of which was estimated for Poland for the late 1980s about 25% (Rutkowski, 
1990), has not been considered here, as this category cannot be seen as a push factor of migration. Hidden 
unemployment occurs, when a reduction of an excess employment in an economy would not lead to a decline in 
the output. This is not visibly related to the migration decisions of the individuals, as it is the case of the real 
unemployed looking for a job and better life perspectives. 
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As the numbers of migrants reported by the origin and destination countries usually differ, the 
greater of the two values has been taken as the estimate of the real magnitude of each of the 
flows, following Kupiszewski (2002: 111–112). The numbers of registered long-term 
migrants have been transformed into crude occurrence-exposure emigration rates, which are 
subject to forecasting, both for migration from Poland to Germany, and vice versa. For 
population at risk, the denominator of crude migration rates, the mid-year population has been 
used. With respect to discontinuity in the trends of Polish population stocks for 1988–2002, 
caused by the underestimation of international emigration, a correction has been applied on 
the basis of the results of the population census from 2002. The post-census adjustment has 
been distributed throughout the period 1988–2002 proportionally to the registered balance of 
migration between Poland and Germany, as registered by German official statistics. 
 
Let us denote emigration rate from Poland to Germany per 1,000 inhabitants of the sending 
country by MRP-D, and from Germany to Poland by MRD-P. Further, let the GDP per capita 
according to the purchasing power parity (PPP, in 2003 international dollars) in Germany be 
noted as GDPD, in Poland as GDPP, and the respective unemployment rates as URD and URP. 
Additionally, a dummy variable Z, equalling 1 for the years 1988–1990 and 0 otherwise, is 
introduced to account for the shock related to the economic transition in the late 1980s. For 
MRP-D, we consider the following three types of models: 
 

1. An autoregressive process AR(1): ln(MRP-D(t)) = c + α · ln(MRP-D(t–1)) + β · Z(t) + ε(t), 
where ε(t) ~ N(0,τ), τ being the precision parameter, a reciprocal of the variance. The 
logarithm transformation has been used, as MRP-D is by definition positive. For c and α, 
diffuse (rather non-informative) prior distributions N(0, 0.001) are assumed. Parameter 
β is expected to follow a relatively informative prior distribution N(1, 0.1), assuming 
that the system transformation in the years 1988–1990 contributed to the magnification 
of the ln(MRP-D) by 1 unit on average. Finally, τ is a priori expected to follow a chi-
squared distribution with one degree of freedom, reflecting a belief in a low precision. 

 
2. A vector autoregressive process VAR(1): X1(t) = c + A · X1(t–1) + β · Z(t) + ε(t), where 

X1(t) = [ln(MRP-D(t)), ln(GDPD(t)/GDPP(t))]T refers to a hypothesis of a role of income 
differentials in explaining international migration, c = [c1, c2] T, A = [αi,j]2x2, β = [β, 0] T 
and ε(t) ~ N(0, T). The logarithms have been used for the same reason as in model 1. 
Analogously to the one-dimensional case, N(0, T) denotes the two-dimensional normal 
distribution with mean 0 = [0, 0]T and precision matrix T. The prior distributions for c1 
and c2 are both diffuse, following N(0, 0.001). Parameters by own-variable lags (α1,1 
and α2,2) follow N(1, 1), assuming a likely random-walk character of each of the 
variables separately. For parameters by cross-variable lags, α1,2 ~ N(0.5, 1) reflects the 
initial hypothesis of a positive impact of the income difference between destination and 
origin countries on migration, and α2,1 ~ N(0, 100) depicts firm prior beliefs of non-
existence of an inverse relationship. The prior distribution for β is assumed to follow 
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N(1, 0.1) for the reasons mentioned before. T is assumed to follow a two-dimensional 
Wishart distribution with 2 degrees of freedom and the scale matrix P = [pi,j]2x2, where 
p1,1 = p2,2 = 0.1 and p1,2 = p2,1 = 0.005, reflecting beliefs in a relatively high precision for 
both variables independently, and a relatively low precision for their interrelations.  

 
3. Another VAR(1) process, X2(t) = c + A · X2(t–1) + β · Z(t) + ε(t), reflecting a 

hypothesis that unemployment in the sending country is an important push factor of 
migration, and thus with x2(t) = [ln(MRP-D(t)), ln(URP(t))]T. The prior distributions are 
assumed the same as in model 2, for the similar reasons to the ones discussed before. 

 
The second set of models, for MRD-P, is analogous, with the same prior distributions of 
parameters assumed for simplicity. These examples of migration forecasting models do not 
aim at covering a comprehensive set of all possible explanatory variables, but to serve merely 
as an illustration of an application of the Bayesian methodology in practice.  
 
In computations, Markov chain Monte Carlo (MCMC) simulations have been used, 
implemented in the WinBUGS 1.4 software (Spiegelhalter et al., 2003). The WinBUGS code, 
drawing heavily on the examples presented in Congdon (2003: 172–175, 189–191, Programs 
5.1 and 5.5), is listed in the Appendix. 
 
4.2. Forecasts of international migration between Poland and Germany, 2004–
2010 
 
For each of the flows, from Poland to Germany and vice versa, three aforementioned models 
have been estimated. The posterior distributions of the parameters of each model have been 
calculated on the basis of 100,000 iterations of the MCMC algorithm, obtained after 
discarding the preceding iterations from the ‘burn-in’ phase of the procedure. After visual 
checks of convergence of the simulations following the suggestions of Spiegelhalter et al. 
(2003), the length of the ‘burn-in’ phase has been established as 10,000, except for model 3 
for migration from Germany to Poland, where the first 100,000 iterations were discarded.  
 
As each of the models was based on a different set of data, their formal comparison using for 
example the Deviance Information Criterion (DIC) incorporated in WinBUGS 1.4 was not 
possible. Instead, the goodness-of-fit of the three models has been compared simplistically, on 
the basis of the sum of squares (SS) of the residuals between the observed and estimated 
values of the respective ln(MR). Results of estimation of the models are presented in Table 1, 
containing summaries of posterior distributions of the parameters of all three forecasting 
models for each of the migratory flows. Table 2 presents summaries of empirical distributions 
of SS obtained from 100,000 samples of the MCMC algorithm. 
 
Summaries of predictive distributions obtained for 2004, 2007, and 2010 in all three models 
are presented in Table 3, for both ln(MRP-D) and ln(MRD-P). 
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Table 1. Summaries of posterior densities of the parameters of three forecasting models, estimated by the MCMC 

              
Migration from Poland to Germany, ln(MRP-D)  Migration from Germany to Poland, ln(MRD-P) Model Parameter Mean St. Dev. 0.025 Median 0.975  Parameter Mean St. Dev. 0.025 Median 0.975

              
              
Model 1 α 0.28 0.23 –0.17 0.28 0.73  α 0.51 0.24 0.04 0.51 0.98
 β 0.96 0.31 0.35 0.96 1.57  β 0.53 0.21 0.11 0.53 0.94
 c 0.70 0.25 0.21 0.70 1.19  c –0.02 0.08 –0.17 –0.02 0.14
 τ 10.16 3.61 4.35 9.74 18.34  τ 13.63 4.84 5.83 13.07 24.61
         
Model 2 α1,1 0.36 0.14 0.09 0.36 0.63  α1,1 0.56 0.13 0.31 0.56 0.81
 α1,2 –0.53 0.29 –1.09 –0.54 0.04  α1,2 0.19 0.22 –0.24 0.19 0.65
 α2,1 0.10 0.04 0.02 0.10 0.17  α2,1 –0.13 0.05 –0.23 –0.13 –0.02
 α2,2 0.88 0.12 0.64 0.88 1.11  α2,2 0.82 0.12 0.58 0.81 1.06
 β 0.78 0.19 0.39 0.78 1.16  β 0.47 0.12 0.23 0.47 0.70
 c1 1.17 0.29 0.58 1.18 1.74  c1 0.18 0.23 –0.27 0.18 0.65
 c2 0.02 0.14 –0.24 0.01 0.29  c2 –0.18 0.12 –0.42 –0.18 0.07
 t1,1 31.62 11.09 13.79 30.31 56.73  t1,1 60.64 21.39 26.24 58.13 109.20
 t2,2 158.00 54.12 70.32 152.00 280.30  t2,2 156.40 54.25 68.86 150.10 278.70
 t1,2 = t2,1 –8.81 17.30 –44.54 –8.23 24.16  t1,2 = t2,1 –3.21 23.95 –51.09 –3.09 44.01
         
Model 3 α1,1 0.42 0.13 0.17 0.42 0.68  α1,1 0.33 0.15 0.03 0.32 0.64
 α1,2 –0.04 0.03 –0.10 –0.04 0.02  α1,2 –0.35 0.21 –0.76 –0.35 0.10
 α2,1 0.05 0.10 –0.14 0.05 0.25  α2,1 –0.08 0.09 –0.25 –0.08 0.10
 α2,2 0.86 0.10 0.65 0.86 1.06  α2,2 0.78 0.20 0.40 0.78 1.17
 β 0.72 0.18 0.36 0.73 1.08  β 0.54 0.09 0.35 0.54 0.72
 c1 0.62 0.17 0.28 0.62 0.94  c1 0.70 0.44 –0.22 0.70 1.53
 c2 0.40 0.28 –0.14 0.40 0.98  c2 0.46 0.40 –0.33 0.47 1.22
 t1,1 42.11 14.87 18.23 40.36 75.71  t1,1 75.30 26.54 32.61 72.21 135.60
 t2,2 2.15 0.80 0.91 2.04 4.02  t2,2 47.61 16.33 21.47 45.70 84.64
 t1,2 = t2,1 5.48 2.95 0.53 5.19 12.04  t1,2 = t2,1 –3.30 15.60 –34.57 –3.21 27.29
              

Source: Own calculations in WinBUGS 

16 



 17 

Table 2. Precision of estimation: summaries of distributions of sums of squares (SS) obtained from 100,000 MCMC samples 

              
Migration from Poland to Germany, ln(MRP-D)  Migration from Germany to Poland, ln(MRD-P) Model Parameter Mean St. Dev. 0.025 Median 0.975  Parameter Mean St. Dev. 0.025 Median 0.975

              
              
Model 1 SS 0.91 0.33 0.60 0.82 1.79  SS 0.43 0.25 0.19 0.36 1.08
Model 2 SS 0.57 0.13 0.43 0.53 0.91  SS 0.24 0.07 0.17 0.23 0.42
Model 3 SS 0.66 0.20 0.44 0.61 1.17  SS 0.18 0.06 0.12 0.16 0.34
     

Source: Own calculations in WinBUGS 
 
Table 3. Summaries of predictive distributions of the ln(MR) values forecasted for 2004, 2007, and 2010, estimated by the MCMC 

              
Migration from Poland to Germany, ln(MRP–D)  Migration from Germany to Poland, ln(MRD–P) Model Year Mean St. Dev. 0.025 Median 0.975  Year Mean St. Dev. 0.025 Median 0.975

              
              
Model 1 2004 0.97 0.37 0.23 0.98 1.71  2004 –0.04 0.35 –0.76 –0.04 0.64
 2007 0.97 0.40 0.18 0.97 1.76  2007 –0.05 0.44 –0.95 –0.04 0.75
 2010 0.97 0.42 0.17 0.97 1.75  2010 –0.07 0.60 –1.08 –0.04 0.78
     
Model 2 2004 1.07 0.23 0.60 1.07 1.53  2004 –0.01 0.18 –0.36 –0.01 0.36
 2007 1.07 0.27 0.55 1.06 1.62  2007 0.00 0.22 –0.42 0.00 0.44
 2010 1.05 0.29 0.49 1.05 1.65  2010 –0.01 0.24 –0.46 –0.01 0.46
     
Model 3 2004 0.88 0.27 0.34 0.88 1.40  2004 –0.08 0.16 –0.40 –0.08 0.24
 2007 0.84 0.34 0.12 0.86 1.46  2007 –0.08 0.23 –0.55 –0.08 0.33
 2010 0.81 0.40 –0.05 0.85 1.48  2010 –0.09 0.41 –0.72 –0.07 0.40
              

Source: Own calculations in WinBUGS  
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The best fit, according to the SS, has been obtained for model 2 for migration from Poland to 
Germany, reflecting the role of income differentials, and for model 3 for migration from 
Germany to Poland, corresponding to the unemployment hypothesis. Results of the forecasts 
are presented in Figures 1 and 2 for flows from Poland to Germany, and in Figures 3 and 4 for 
flows from Germany to Poland. Figures 1 and 3 show the estimated kernel densities of 
predictive distributions of the respective ln(MR) forecasts for 2004, 2007, and 2010. Figures 2 
and 4 show the respective MR data series for 1985–2003, as well as the out-of-sample 
forecasts for 2004–2010 for the three models defined in Section 4.1, transformed back from 
logarithms to crude rates. For all models, the posterior quantiles of rank 0.025, 0.5 and 0.975 
are presented.  
 
For many parameters, with the exception of most own-variable autoregression coefficients (α, 
α1,1, and α2,2), and the dummy-related coefficients β, the intervals between the quantiles of 
rank 0.025 and 0.975 are wide and often cover 0 (Table 1). For migration from Germany to 
Poland all constants are thus ‘insignificant’, as are most of the interaction parameters α1,2 and 
α2,1 in models 2 and 3. For migration from Poland to Germany, this is the case of the 
autoregression coefficient α in model 1, constants c2 and coefficients α1,2 in models 2 and 3, 
as well as of α1,2 in model 3 only. For this reason, the inference on constants and on 
interactions between ln(MR) and other variables in models 2 and 3, apart from the dummies, 
is in many cases very vague.  
 
The estimated posterior precision (parameters τ or T) usually appeared to be high, contrary to 
the prior beliefs. In that respect, the data have had more weight in the posterior distributions 
than the priors, an exception being ln(URP(t)) in model 3 for flows from Poland to Germany. 
Knowing that, an additional analysis might be additionally performed on the robustness on the 
results, taking into consideration prior beliefs in more precision, not discussed in this paper. 
 
Almost all own-variable autoregression coefficients, with the exception of α in model 1 for 
migration from Poland to Germany, are highly likely positive and smaller than one. This 
indicates a long-term stationarity of the logarithmic transformations of the variables under 
study (MR, GDP fraction, and UR). In the case of models 2 and 3 for migration from Poland 
to Germany, and of model 3 for migration from Germany to Poland, interpretation of the 
model-specific coefficients α1,2 is counter-intuitive. With a decreasing income gap or 
unemployment in the sending country, one would expect a decreasing MRP-D, thus a positive 
α1,2 rather than a negative one, whereas for the mentioned coefficients most of the probability 
mass is concentrated below zero. This conclusion, however, needs to be treated with caution, 
due to the fact that the 95% credible intervals cover zero in all mentioned cases.  
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Figure 1. Predictive densities of ln(MRP-D) for 2004, 2007, and 2010, estimated by the MCMC 

 
Source: Own calculations in WinBUGS 
 
 

Figure 2. MRP-D: observed for 1985–2003, forecasted for 2004–2010 (predictive quantiles) 
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Figure 3. Predictive densities of ln(MRD-P) for 2004, 2007, and 2010, estimated by the MCMC 

 
Source: Own calculations in WinBUGS 
 
 

Figure 4. MRD-P: observed for 1985–2003, forecasted for 2004–2010 (predictive quantiles) 
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For all models, the dummy-related coefficients β are most likely positive, equalling between 
0.47 and 0.54 for migration from Germany to Poland, and between 0.78 to 0.96 for flows in 
the opposite direction. This indicates that the system transformation significantly contributed 
to the increase of migration between the two countries in 1988–1990.  
 
The median forecasts of migration from Poland to Germany predict a stabilisation of MRP-D 
around 2.65 in model 1, or a slight declining tendency: from 2.90 to 2.84 throughout the 
forecast horizon in model 2, or from 2.42 to 2.34 in model 3. The median forecasts yielded by 
model 1 are thus in-between the ones produced by models 2 and 3. All forecasts, especially 
produced by model 1, are characterised by relatively wide uncertainty spans, as indicated by 
the predictive quantiles shown in Figure 2.  
 
The predicted median-forecast rates of emigration from Germany to Poland are expected to be 
almost stable throughout the forecast horizon in all models, with values either equal, or just 
below one. Again, model 1 produced the median forecasts that are in-between the ones 
yielded by models 2 (higher) and 3 (lower) in the whole period 2004–2010. The uncertainty 
range is also large in all forecasting models, especially in model 1 (Figure 4). In the presented 
examples, adding explanatory variables to the model visibly reduced the uncertainty of the 
forecasts. 
 

5. Conclusions 
 
There are three major advantages of using the Bayesian methodology in the context of 
international migration forecasting. Firstly, its eclectic character allows for combining the 
positive features of various forecasting methods in a formal way, by the means of Bayesian 
statistics and the subjective theory of probability. This approach also offers simple tools for 
model selection and averaging, not exploited in the current example. Secondly, the 
quantitative analysis of uncertainty with respect to the future developments of phenomena 
under study is inherent in the Bayesian forecasts, which yield whole predictive distributions. 
The latter can serve as a natural and straightforward way of obtaining projection variants. 
Thirdly, with informative prior distributions consistent with the observations, the Bayesian 
estimates and forecasts are expected to carry smaller prediction errors than the sampling-
theory ones, what is especially important in the small-sample cases. Although the major 
disadvantage of the approach is the computational complexity, it can be overcome by using 
numerical methods (Markov chain Monte Carlo) included in an easily available free software 
(e.g., WinBUGS), in order to obtain meaningful forecasts, as it has been shown in Section 4.  
 
Bayesian statistics also allows for eliminating some problems with interpretation of the 
results, caused by relating probability to the frequency of events, as it is usually done in the 
sampling-theory approach. This is crucial with respect to the repeatable sample assumption, 
which is not a natural premise of analysis in the social sciences, including migration research.  
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Further studies in Bayesian migration forecasting, not covered by the current paper, may 
additionally include the issues of formal model selection, model averaging, and robustness of 
the results on different types of the prior information.  
 

References 
 
Alho, J. (1990). Stochastic methods in population forecasting. International Journal of 

Forecasting, 6 (4), 521–530. 
Alho, J. (1998). A stochastic forecast of the population of Finland. Reviews 1998/4. Helsinki: 

Statistics Finland. 
Alho, J., and B. Spencer (1985). Uncertain population forecasting. Journal of the American 

Statistical Association, 80 (390), 306–314. 
Alvarez-Plata, P., H. Brücker, and B. Siliverstovs (2003). Potential Migration from Central 

and Eastern Europe into the EU-15 – An Update. Report for the EC DG of 
Employment and Social Affairs. Berlin: Deutsches Institut für Wirtschaftsforschung. 

Barnard, G. A. (1947). The Meaning of a Significance Level. Biometrika, 34 (2), 179–182. 
Barnard, G. A. (1949). Statistical inference. Journal of the Royal Statistical Society B, 11 (1), 

115–149. 
Barro, R. J. and X. Sala-i-Martin (1995). Economic Growth. New York: McGraw-Hill. 
Bauer, T., and K. F. Zimmermann (1999). Assessment of Possible Migration Pressure and its 

Labour Market Impact Following EU Following EU Enlargement to Central and 
Eastern Europe. IZA Research Report 3. Bonn: Institut zur Zukunft der Arbeit. 

Bayarri, M. J., and J. O. Berger (2004). The Interplay of Bayesian and Frequentist Analysis. 
Statistical Science, 19 (1), 58–80. 

Bayes, T. (1763). An Essay towards solving a Problem in the Doctrine of Chances. 
Philosophical Transactions of the Royal Society, 53, 370–418. 

Bernardo, J. M., and A. F. M. Smith (2000). Bayesian Theory. Chichester: John Wiley. 
Blumen, I., M. Kogan, and P. J. McCarthy (1955). The Industrial Mobility of Labour as a 

Probability Process. Ithaca, NY: Cornell University Press. 
Box, G. E. P., and G. M. Jenkins (1976). Time Series Analysis: Forecasting and Control. San 

Francisco: Holden-Day. 
Brown, L. A. (1970). On the use of Markov chains in movement research. Economic 

Geography, 46 (Suppl.), 393–403. 
Brücker, H., and B. Siliverstovs (2005). On the Estimation and Forecasting of International 

Migration: How Relevant is Heterogeneity Across Countries. IZA Discussion Paper 
170. Bonn: Institut zur Zukunft der Arbeit. 

Chatfield, C. (2002). Confessions of a pragmatic statistician. The Statistician, 51 (1), 1–20. 
Congdon, P. (2000). A Bayesian Approach to Prediction using the Gravity Model, with an 

Application to Patient Flow Modelling. Geographical Analysis, 32 (3), 205–224. 



 23

Congdon, P. (2001). The development of gravity models for hospital patient flows under 
system change: a Bayesian modelling approach. Health Care Management Science, 4 
(4), 289–304. 

Congdon, P. (2003). Applied Bayesian Modelling. Chichester: John Wiley. 
Courgeau, D. (1985). Interaction between Spatial Mobility, Family and Career Life Cycle: A 

French Survey. European Sociological Review, 1 (2), 139–162. 
Daponte, B. O., J. B. Kadane, and L. J. Wolfson (1997). Bayesian Demography: Projecting 

the Iraqi Kurdish Population, 1977–1990. Journal of the American Statistical 
Association, 92 (440), 1256–1267. 

De Beer, J. (1990). Uncertainty of international-migration projections for the 12 EC-
countries. Voorburg: Central Bureau of Statistics. 

De Beer, J. (1997). The effect of uncertainty of migration on national population forecasts: 
the case of the Netherlands. Journal of Official Statistics, 13 (3), 227–243. 

De Finetti, B. (1937). La prévision: ses lois logiques, ses sources subjectives. Annales 
del’Institute Henri Poincaré, 7, 1–68. 

Drbohlav, D. (1995). Abschätzung der zukünftigen Ost-West-Migration in Europa. Eine 
Delphi-Studie. In: H. Fassmann, and R. Münz (eds.), Die Zukunft der Ost-West 
Wanderung. Quantitative Entwicklungen, ökonomische Konsequenzen und politische 
Antworten. Wien: Österreichische Akademie der Wissenschaften, 24–49. 

Eurostat (2006). Population projections for the European Union 2004–2050. Luxembourg: 
Eurostat, forthcoming. 

Fassmann, H., and C. Hintermann (1997). Migrationspotential Ostmitteleuropa. ISR-
Forschungsberichte, 15. Wien: Institut für Stadt- und Regionalforschung. 

Fertig, M., and C. M. Schmidt (2000). Aggregate-level migration studies as a tool for 
forecasting future migration streams. IZA Discussion paper 183, Bonn: Institut zur 
Zukunft der Arbeit. 

Franzmeyer, F., and H. Brücker (1997). Europäische Union: Osterweiterung und 
Arbeitskräftemigration. DIW Wochenbericht 5/97. Berlin: Deutsches Institut für 
Wirtschaftsforschung, 89–96. 

Ginsberg, R. B. (1971). Semi-Markov Processes and Mobility. Journal of Mathematical 
Sociology 1 (1), 233–262. 

Ginsberg, R. B. (1979). Timing and duration effects in residence histories and other 
longitudinal data: I – stochastic and statistical models. Regional Science and Urban 
Economics, 9 (4), 311–331. 

Girosi, F., and G. King (2005). Demographic Forecasting. Manuscript. Boston, MA: Center 
for Basic Research in the Social Sciences, Harvard University; 
«http://gking.harvard.edu/files/smooth.pdf». 

Gjaltema, T. A. (2001). Judgement in Population Forecasting. Paper for the European 
Population Conference, Helsinki, 7–9 June 2001. 

Goodman, L. A. (1961). Statistical methods for the mover-stayer model. Journal of the 
American Statistical Association, 56 (296), 841–868. 



 24 

Gorbey, S., D. James, and J. Poot (1999). Population Forecasting with Endogenous 
Migration: An Application to Trans-Tasman Migration. International Regional 
Science Review, 22 (1), 69–101. 

Hoeting, J. A., D. Madigan, A. E. Raftery, and C. T. Volinsky (1999). Bayesian Model 
Averaging: A Tutorial. Statistical Science, 14 (4), 382–417. 

IOM [International Organization for Migration] (1998). Migration Potential in Central and 
Eastern Europe. Geneva: IOM. 

Isard, W. (1960). Methods of regional analysis: an introduction to regional science. New 
York: John Wiley. 

Jaynes, E. T. (1976). Confidence intervals vs. Bayesian intervals. In: W. L. Harper, and C. A. 
Hooker (eds.), Foundations of Probability Theory, Statistical Inference and Statistical 
Theories of Science 2. Dordrecht: Reidel, 175–257 (with discussion). 

Jeffreys, H. (1939). Theory of Probability. Oxford: Oxford University Press. 
Jeffreys, W. H., and J. O. Berger (1992). Ockham’s razor and Bayesian analysis. American 

Scientist, 80 (1), 64–72. 
Keilman, N. (1990). Uncertainty in national population forecasting: Issues, backgrounds, 

analyses, recommendations. Amsterdam: Swets and Zeitlinger. 
Keilman, N. (2001). Demography: Uncertain population forecasts. Nature, 412 (6846), 490–

491. 
Keilman, N., D. Q. Pham, and A. Hetland (2001). Norway’s Uncertain Demographic Future. 

Oslo: Statistics Norway. 
Keyfitz, N. (1980). Multidimensionality in Population Analysis. IIASA Report RR-80-33. 

Laxenburg: International Institute for Applied System Analysis. 
Keyfitz, N. (1981). The limits of population forecasting. Population and Development 

Review, 7 (4), 579–593. 
Kupiszewski, M. (2002). Modelowanie dynamiki przemian ludności w warunkach wzrostu 

znaczenia migracji międzynarodowych. Warszawa: Instytut Geografii i Przestrzennego 
Zagospodarowania PAN.  

Laplace, P. S. (1812). Théorie Analytique des Probabilités. Paris: Veuve Courcier. 
Lee, R. D., and S. Tuljapurkar (1994). Stochastic population projections for the United States: 

Beyond high, medium and low. Journal of the American Statistical Association, 89 
(419), 1175–1189. 

Leslie, P. H. (1945). On the Use of Matrices in Certain Population Mathematics. Biometrika, 
33 (3), 183– 212. 

Lutz, W., and J. R. Goldstein (2004). Introduction: How to Deal with Uncertainty in 
Population Forecasting? International Statistical Review, 72 (1), 1–4. 

Lutz, W., W. C. Sanderson, and S. Scherbov (1996). Probabilistic population projections 
based on expert opinion. In: W. Lutz (ed.), The future population of the World. What 
can we assume today? London: Earthscan, 397–428. 

Lutz, W., W. C. Sanderson, and S. Scherbov (1998). Expert based probabilistic population 
projections. Population and Development Review, 24 (Suppl.), 139–155. 



 25

Lutz, W., W. C. Sanderson, and S. Scherbov (eds.) (2004). The End of World Population 
Growth in the 21st Century: New Challenges for Human Capital Formation and 
Sustainable Development. London: Earthscan. 

McGinnis, R., G. C. Myers, and J. Pilger (1963). Internal migration as a stochastic process. 
Paper for the 34th session of the International Statistical Institute, Ottawa, 21–29 
August 1963. 

NRC [National Research Council] (2000). Beyond Six Billion. Washington, DC: National 
Academies Press. 

Pittenger, D. (1978). The role of judgement, assumptions, techniques and confidence limits in 
forecasting population. Socioeconomic Planning Sciences, 12 (5), 271–276. 

Prais, S. J. (1955). Measuring social mobility. Journal of the Royal Statistical Society A, 118, 
56–66. 

Ramsey, F. P. (1926). Truth and Probability. In: R. B. Braithwaite (ed.) (1931), F. P. Ramsey: 
The Foundations of Mathematics and other Logical Essays. London: Kegan, Paul, 
Trench, Trubner and Co.; New York: Harcourt, Brace and Co., 156–196. 

Rees, P. H., and I. Turton (1998). Investigation of the effects of input uncertainty on 
population forecasting. Paper for the 3rd International GeoComputation Conference, 
Bristol, 17–19 September 1998. 

Rees, P. H., and A. G. Wilson (1973). Accounts and models for spatial demographic analysis 
1: Aggregate population. Environment and Planning A, 5 (1), 61–90. 

Rogers, A. (1966). A Markovian Policy Model of Interregional Migration. Papers of the 
Regional Science Association, 17, 205–224. 

Rogers, A. (1975). Introduction to Multiregional Mathematical Demography. New York: 
John Wiley. 

Rutkowski, M. (1990). Labour Hoarding and Future Unemployment in Eastern Europe: The 
Case of Polish Industry. CEP Discussion Paper No. 6/1990. London: Centre of 
Economic Performance, London School of Economics. 

Savage, L. J. (1954). Foundations of Statistics. New York: John Wiley. 
Sinn, H.-W., G. Flaig, M. Werding, S. Munz, N. Duell, and H. Hofmann (2001). EU-

Erweiterung und Arbeitskräftemigration. Wege zu einer schrittweisen Annäherung der 
Arbeitsmärkte. München: IFO-Institut für Wirtschaftsforschung. 

Spiegelhalter, D. J., A. Thomas, N.G. Best, and D. Lunn (2003). WinBUGS Version 1.4 Users 
Manual. Cambridge: MRC Biostatistics Unit; «http://www.mrc-bsu.cam.ac.uk/bugs». 

Stewart, J. Q. (1941). An inverse distance variation for certain social influences. Science, 93 
(2404), 89–90. 

Stoto, M. A. (1983). The Accuracy of Population Projections. Journal of the American 
Statistical Association, 78 (381), 13–20. 

Stouffer, S. A. (1940). Intervening opportunities: a theory relating mobility and distance. 
American Sociological Review, 5 (6), 845–867. 

Tuljapurkar, S., and C. Boe (1999). Validation, probability-weighted priors and information 
in stochastic forecasts. International Journal of Forecasting, 15 (3), 259–271. 



 26 

United Nations (2005). World Population Prospects: 2004 Revision. New York: United 
Nations. 

Weidlich, W., and G. Haag (eds.) (1988). Interregional migration: dynamic theory and 
comparative analysis. Berlin-Heidelberg: Springer. 

Willekens, F. (1995). Monitoring international migration flows in Europe. Towards a 
statistical data base combining data from different sources. European Journal of 
Population, 10 (1), 1–42. 

Wilson, A. G. (1970). Entropy in Urban and Regional Modelling. London: Pion. 
Wilson, A. G. (1981). Catastrophe Theory and Bifurcation. London: Croom Helm. 
Wilson, T., and M. Bell (2004). Australia’s uncertain demographic future. Discussion Paper 

2003/04. Brisbane: Queensland Centre for Population Research, the University of 
Queensland. 

Zellner, A. (1971). An Introduction to Bayesian Inference in Econometrics. New York: John 
Wiley. 

■ 
 



 27

Appendix: WinBUGS code for Bayesian AR(1) and VAR(1) 
forecasting models 
 
A. Model AR(1) 
 
model { # AR(1) with a dummy 
# Priors 
c ~ dnorm(0,0.001) 
alpha ~ dnorm (0,0.001) 
beta ~ dnorm (1,0.1) 
tau ~ dchisqr(1) 
# Data definitions 
for (t in 1:n) { y[t] <- log(MR[t]) } 
for (t in 1:N) { z[t] <- Dummy[t] } 
# Model 
for (t in 2:n) { mu[t] <- c + alpha * y[t-1] + beta * z[t] 
 y[t] ~ dnorm(mu[t], tau) 
 y.new[t] ~ dnorm(mu[t], tau) 
 sqresid[t] <- pow(mu[t] - y[t],2) } 
ss <- sum(sqresid[2:n])  
# Forecasts for t = n+1 … N 
for (t in n+1:N) { mu.new[t] <- c + alpha * y.new[t-1] + beta * z[t] 
  y.new[t] ~ dnorm (mu.new[t], tau) } 
} 

 
B. Model VAR(1) 
 
model { # VAR(1) with a dummy for migration 
# Priors 
c[1] ~ dnorm(0,0.001); c[2] ~ dnorm(0,0.001)   # constants 
alpha[1,1] ~ dnorm(1,1); alpha[2,2] ~ dnorm(1,1)  # own variable lags 
alpha[1,2] ~ dnorm(0.5,1); alpha[2,1] ~ dnorm(0,100) # cross-variable lags 
beta[1] ~ dnorm(1,0.1); beta[2] <- 0    # dummy 
T[1:2,1:2] ~ dwish(P[1:2,1:2],2)    # scale matrix 
P[1,1] <- 0.1; P[2,2] <- 0.1; P[1,2] <-0.005; P[2,1] <- 0.005  
# Data definitions 
for (t in 1:n) { y[t,1] <- log(VAR1[t]); y[t,2] <- log(VAR2[t]) } 
for (t in 1:N) { z[t] <- Dummy[t] } 
# Model 
for (t in 2:n) { for (i in 1:2) { mu[t,i] <- alpha[i,1] * y[t-1,1] + alpha[i,2] * y[t-1,2] +  

+ beta[i] * z[t] + c[i] } 
 y[t,1:2] ~ dmnorm(mu[t,1:2],T[1:2,1:2]) 
 y.new[t,1:2] ~ dmnorm(mu[t,1:2],T[1:2,1:2]) 
 sqresid[t] <- pow(mu[t,1] - y[t,1],2) }  
ss <- sum(sqresid[2:n])  
# Forecasts for t = n+1 … N 
for (t in n+1:N) { for (i in 1:2) { mu.new[t,i] <- alpha[i,1] * y.new[t-1,1] +  
    + alpha[i,2] * y.new[t-1,2] + beta[i] * z[t] + c[i] } 
 y.new[t,1:2] ~ dmnorm(mu.new[t,1:2], T[1:2,1:2]) } 
} 
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