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1. Uncertainty in migration forecasting
• Uncertainty is immanent in every forecast about the future

• Besides, the sources of uncertainty usually include:
– Data quality and availability;
– Selection of the forecasting model;
– Subjectivity of the assumptions.

• How uncertainty is dealt with in migration forecasting? 
– Ignored (deterministic models)
– Acknowledged, but not quantified (variant projections)
– Acknowledged and quantified (stochastic forecasts,              

with uncertainty measured in terms of probability)
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Let θ denote unknown model parameters, and x – data (observations).
Then [Bayes, 1763; Laplace, 1812]:

Posterior distribution Prior distribution

Likelihood of the data, given θ Marginal likelihood of x
(‘traditional’) (independent from θ )

• In Bayesian statistics, probability is interpreted subjectively,
as a measure of belief

The Bayes Theorem

p(x)
p(θp(xx)p( ))|| ⋅

=
θθ

2. Bayesian statistics: introductory notes
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Let x denote observed (past) values, and xF – forecasted (future) values

Result: predictive Sample-based Posterior distribution of θ
distribution predictions

The outcome of a Bayesian forecast
is the whole predictive distribution,
and not a single value

Bayesian forecasting

θθθ
θ

dxpxxpxxp FF )|(),|()|( ⋅= ∫
Θ∈

2. Bayesian statistics: introductory notes
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3. Bayesian model selection and averaging

Bayesian Model Selection

• Let M1, …, Mm be mutually exclusive (not nested) models 
adding up to the whole finite space of possible models, M

• Let p(M1), …, p(Mm) be the models’ prior probabilities, e.g.:
– Flat prior (equal probabilities): p(M1) = … = p(Mm)
– “Occam’s razor” prior, favouring simpler models with smaller  

numbers of parameters, li: p(Mi) ∝ 2 ^ (–li)

• For forecasting, a model with highest posterior probability 
is selected on the basis of                                     
the Bayes Theorem:
[Hoeting et al., 1999; Osiewalski, 2001] ∑ ∈

⋅
⋅

=
Mk kk
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3. Bayesian model selection and averaging

Bayesian Model Averaging
• Under the same assumptions, the forecasted vector xF

given the data x, averaged over the model space M, is:
Predictive

distribution
Averaged predictive distribution        Model posterior probability          in the i-th model

• Rationale for use in migration (population) forecasts:
– There is no evidence, whether simpler or more complex models 

perform better, but the forecast accuracy can be potentially  
improved by combining various forecasts [cf. Ahlburg, 1995; Smith, 1997]

– Existing Bayesian migration forecasts are scarce [Gorbey et al., 1999]

– There is a non-Bayesian example of an averaged migration forecast 
in the recent projections of the Eurostat [Lanzieri / EUROPOP, 2004]

),|()|()|( ii i MpMpp xxxxx F
M

F ∑ ∈
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Aim

• Forecasted variable: logarithms of emigration rates per 
1,000 population of the sending country (denoted by mt)

• Data series for 1985–2004 (to / from Poland: 1991–2004)

• Sources of data: population – Eurostat; migration – data 
of a country with higher numbers (usually Germany)

• Population stocks include post-census adjustments

4. Empirical examples of migration forecasts

Data

To forecast long-term migration between Germany and 
three countries: Italy, Poland and Switzerland by 2010
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4. Empirical examples of migration forecasts
Models

• M1: random oscillations around a constant
mt = c + εt

• M2: random walk with drift
mt = c + mt–1 + εt

• M3: autoregressive process AR(1)
mt = c + φ mt–1 + εt φ ≠ 0, φ ≠ 1

• M4: moving average process MA(1)
mt = c – θ εt–1 + εt θ ≠ 0 

• M5: autoregressive moving average process ARMA(1)
mt = c + φ mt–1 – θ εt–1 + εt φ ≠ 0, θ ≠ 0
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4. Empirical examples of migration forecasts
Other remarks

• Sample distribution: Normal, εt ~ N(0, σ2)
• Prior distributions for parameters:

– Constants: diffuse, N(0, 1002) – hardly informative
– Parameters of the AR / MA components: N(0.5, 12)
– Variance (σ2): Gamma(0.5, 0.5) – low precision assumed

• Estimation: numerical simulation using Markov chain 
Monte Carlo (MCMC), with 10,000 iterations in the burn-
in phase and further 100,000 used in the estimation

• Software: WinBUGS 1.4 [Spiegelhalter et al., 2003]

• Convergence assessment: visual inspection of quantiles
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4. Empirical examples of migration forecasts
Model probabilities: prior and posterior (estimated)

Model (Mi) M1 M2 M3 M4 M5 Σ 
Prior probabilities  

(A) Non-informative prior, p(Mi) ∝ const. 0.200 0.200 0.200 0.200 0.200 1 
(B) ‘Occam’s razor’ prior, p(Mi) ∝ 2^(–li) 0.308 0.308 0.154 0.154 0.077 1 

Migration from Italy to Germany, mIT-DE 
p(Mi|x), prior (A) 0.000 0.347 0.205 0.007 0.441 1 
p(Mi|x), prior (B) 0.000 0.616 0.181 0.007 0.196 1 

Migration from Germany to Italy, mDE-IT 
p(Mi|x), prior (A) 0.000 0.249 0.367 0.018 0.366 1 
p(Mi|x), prior (B) 0.000 0.456 0.356 0.016 0.171 1 

Migration from Poland to Germany, mPL-DE 
p(Mi|x), prior (A) 0.155 0.092 0.198 0.313 0.241 1 
p(Mi|x), prior (B) 0.272 0.168 0.175 0.275 0.111 1 

Migration from Germany to Poland, mDE-PL 
p(Mi|x), prior (A) 0.079 0.207 0.291 0.171 0.252 1 
p(Mi|x), prior (B) 0.135 0.361 0.249 0.147 0.108 1 

Migration from Switzerland to Germany, mCH-DE 
p(Mi|x), prior (A) 0.119 0.283 0.224 0.166 0.208 1 
p(Mi|x), prior (B) 0.187 0.431 0.173 0.128 0.081 1 

Migration from Germany to Switzerland, mDE-CH 
p(Mi|x), prior (A) 0.000 0.469 0.311 0.003 0.217 1 
p(Mi|x), prior (B) 0.000 0.684 0.232 0.002 0.081 1 
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4. Empirical examples of migration forecasts
Results: predictive distributions (selected)

a) Logs of emigration rates Poland-Germany    b) Logs of emigration rates Germany-Switzerland
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4. Empirical examples of migration forecasts
Results: quantiles from predictive distributions
a) Emigration rates Poland-Germany    b) Emigration rates Germany-Switzerland
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rates per 1,000 population of a sending country
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5. Concluding remarks
• Bayesian model selection and averaging techniques     

allow to reduce uncertainty of model specification
• General advantages of Bayesian approach in forecasting:

– Inherent analysis of forecasts’ uncertainty: predictive distributions
– Formal and explicit incorporation of expert judgement in stochastic 

forecasts in the form of prior distributions
– Methodology suitable for small samples (short series)
– Subjective interpretation of probability allows for avoiding some 

interpretation problems, including the repeatable sample assumption
• The major disadvantage: computational complexity

Solution: numerical methods (MCMC), software freely available
• Possible paths of further research:

– A wider class of models, including other explanatory variables
– Robustness against changes in prior distributions
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Thank you for your attention!




